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Motivation

Basic linear-quadratic (LQ) regulator problem with BM noise W:
t
X = / asds + W,
0
and a quadratic cost functional on finite horizon T to minimize
T
J(a) = E[/ (X2 +a?)e].
0

This LQ problem can be explicitly solved by different methods relying on
[t6 stochastic calculus including standard dynamic programming,
maximum principle . ..
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Motivation
Basic linear-quadratic (LQ) regulator problem with BM noise W

t
X = / asds + W,
0

and a quadratic cost functional on finite horizon T to minimize

J(a) = IE{/OT (\Xta|2+af)dt]
Optimal control: .
af = =T 7X>, 0<t<T,
where I is a deterministic nonnegative function:
e, 7 = tanh(T —t),
that is solution to the Riccati equation:
Fer=-1+T2; Trr=0

and thus the associated optimal state process X is a mean-reverting
Markov process.
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Motivation
Basic linear-quadratic (LQ):

t
Xto‘:/asds+Wt, t>0,
0

replace W by a Gaussian process with memory, typically a fractional
Brownian motion

t ot
X = / asds—i—/ (t —s)"12dw,, t>0,
0 0

or more generally by stochastic Volterra equations:

t t

X = gol) +/ K(t — 5)b(s, X, as)ds +/ K(t - 5)o(s, X, as)dWs,
0 0

Question: how is the structure of the solution modified? Numerics?

Sticking points: stochastic calculus for semimartingales and usual

methods for Markov processes no longer available!
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Literature review

Several techniques in the literature for control of stochastic Volterra
equations (or fractional Brownian motion):

» Malliavin calculus Agram & Oksendal (2015)

» Gaussian calculus: Duncan & Duncan (2012)

» Backward stochastic Volterra equations: Yong (2006), Wang (2018)
» Path dependent HJB: Han & Wong (2019)
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Literature review

Several techniques in the literature for control of stochastic Volterra
equations (or fractional Brownian motion):

» Malliavin calculus Agram & Oksendal (2015)
» Gaussian calculus: Duncan & Duncan (2012)
» Backward stochastic Volterra equations: Yong (2006), Wang (2018)
» Path dependent HJB: Han & Wong (2019)
Challenges and Limitations:
1. Difficulty in dealing with fractional Brownian motion with
H e (0,1/2),
2. Control in the volatility,
3. Lack of numerical methods,
4. In the LQ framework: underlying LQ structure not well identified.

Aim: Treat all 4 challenges in one go.
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0 0

where a; € R™ belongs to some admissible set A, K € [2([0, T],R9*9")
and

b(t,x,a) = B(t) + Bx+ Ca, o(t,x,a) =~(t)+ Dx + Fa,

some matrices B, C, D, F with suitable dimension.
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Set -up
Controlled process in RY:

t

t
xe :go(t)+/ K(t—s)b(s,Xs"ﬂas)ds—k/ K(t— $)o(s, X2, as)dWs,
0 0

where a; € R™ belongs to some admissible set A, K € [2([0, T],R9*9")
and

b(t,x,a) = B(t) + Bx+ Ca, o(t,x,a) =~(t)+ Dx + Fa,

some matrices B, C, D, F with suitable dimension.
Cost functional:

-
J(a)=E / (X T QXY + af Nag) ds
0

Optimization problem:

Vo= Ja )
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> K= Id
» Revisit conventional LQ problems

» From dimension 1, to R? to
Hilbert spaces.
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for some deterministic function t — 'y to be determined such that
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d=1

Deriving the solution

Dimension d = 1:

dX{* = (BX{' + Cas)ds + (DX{* + Fos) dW,

J(o)=E

-
/ (Q(X)? + No) ds]
0
Ansatz for value function:
Ve =T.X?
for some deterministic function t — 'y to be determined such that

N=0.
Strategy: Inspired by martingale verification argument: Find I such that

t
Sy =V +/ (QXZ + NaZ) ds
0

is a submartingale for every & € A and a martingale for o*.
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dX2 = (BX® + Cas) ds + (DX + Fag) dW,
SO = Vo4 /Ot (QXZ + Na2) ds
By Ité:

dsg = X? (h +Q+2Bl: + D2Ft) dt
+ (a2(N + F2Ty) + 20 X, (CT + DFT,)) dt
+2(DMeX? + FaeX) dW,
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=
Deriving the solution
dX® = (BX® + Cas) ds + (DX + Fay) dW,
SO = Vo4 /Ot (QXZ + Na2) ds
By Ité:
dSe = X2 (n +Q+2BM + D2Ft> dt

+ (a3(N + F2l,) + 20X, (CT + DFT,)) dt
+2 (DT X? + FaeX;) dW,

Completion of squares: on red term
(o) = (N + Fzrt) (o — Gfr)z - (N + Fzrt)_l (CTe + DFrt)2 sz

with )
af =— (N+ F?l,) "~ (CTe+ DFT) X;
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+ (N4 F2Ty) (r — ) dt
+2(DreX? + FaeXe) dW;
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dsy = X2 (Fe+ @+ 2B + DT — (N + F2r) ™ (CTe + DFT,)) dt

+ (N4 F2Ty) (r — ) dt
+2(DreX? + FaeXe) dW;

Vanishing first term if ' solves the Backward Riccati equation:

f=—Q—2Bl,— DT+ (N+ F°T) " (CTy+ DFT,)?, Tr=0.
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dsy = X2 (Fe+ @+ 2B + DT — (N + F2r) ™ (CTe + DFT,)) dt
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= M* =5 — [ (N+ FT,) (as — a})?ds is a local martingale.
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d=1

Deriving the solution

dse = X2 (rt +Q+2Bl+ Dl — (N4 F2ry) 7 (CTy + DFFt)z) dt
+ (N + FTe) (ar — ol )? dt
+2(DTX? + FarX:) dW,
Vanishing first term if ' solves the Backward Riccati equation:
le=-Q—2Bl,— DT+ (N+ /ﬂrt)’1 (CTe+ DFT.)?, Tr=0.

= M* =5 — [ (N+ FT,) (as — a})?ds is a local martingale.
True martingale if

supE [X{] < 0.
t<T
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provided >0

where
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d=1

Deriving the solution

Writing the martingale property E[M$|F;] = Mg we obtain

;
Ji(@) = Ve =E / (N + F?Ty) (s — a§)2ds‘]-} >0,
f N\ —
provided >0

where

Ji(a) =E VtT (X2 +a2) ds‘ft] :

This shows that a* is an optimal control and V" is the value function
of the problem:
Vel = inf Jy(o
t acAi(a*) t( )

where
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Dimension 1

A= {a : Q x [0, T] = R progressive such that sup E [Ja|*] < oo}
0<t<T

Verification result in dimension 1

Assume that
1. There exists a nonnegative solution I" to the Riccati equation:

2. There exists an admissible control o* satisfying
* 2 -1 a”
of=—(N+F I't) (CTy+ DFT ) X{
Then, a* is an optimal control and V" = I'(X?")? is the value function

of the problem:
Ve =inf Ji(@)

1 and 2 are obtained if
Q@>0 and N >0.
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Hilbert space
Hilbert space

The result also hold for X with values in some Hilbert space H:
dXy = (AXY + BX + Cay) ds + (DX + Fay) dW,

provided the matrix Riccati equation is replaced by an operator Riccati
equation I

rt - _rtA - A*rt - Q - B*rt - rtB - D*rtD
+ (C*My + F*I D) (N + F*T,F) "' (C*T + F*T:D), [y =0.
with a corresponding value function:

Ve = (X TeXE
aj = —(N+ FT.F)" (C* Ty + FT.D) X

See Da Prato (1984), Flandoli (1986).
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Solvability of LQ Volterra

t

t
X :go(t)+/ K(tfs)b(s,X_f‘,as)ds+/ K(t —s)o(s, X, as)dWs
0

0

» Non-Markovian/ non-semimartingale

Lift the process to recover Markovianity:

» Every process X can be made Markovian in infinite-dimension by
keeping track of its past Xy = (X;)s<t,

> Alternative way: forward lift

g(s)=E [xs _ /t K(s u)budu‘]-"t}

(A.J. & El Euch '19, Cuchiero & Teichmann '18, Han & Wong '19,
Viens & Zhang '19)
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Assumptions & examples

Assumption on K:
Assumption on K: Laplace transform of a d x d’-matrix signed measure
L
K(t) = / e0u(d), t>0,
R,
such that

/R (170722 |ul(d6) < oo,

where |u] is the total variation of the measure (.
Remark: p;;(R4) not necessarily finite, ie singularity of the kernel at 0
allowed! But K € L2([0, T],R¥*¥")



Stochastic Volterra
oe

Assumptions & examples

Assuption on K:

Assumption on K:

K(t):/ e 0u(d), t>0,
Ry

Examples
>

K(t)=> cle ¥ u(dd) => cféor(db)
i=1 i=1

» Fractional kernel (d = d’ = 1)
FH=1/2 p—H-1/2
) ,U/H(de) = .
NH+1/2) MH+1/2)I(1/2 - H)

KH(I') =

» Completely monotone kernels K, i.e. K is infinitely differentiable on
(0, 00) such that (—1)"K("(t) is nonnegative for each t > 0,
(Bernstein's theorem)

» Sums and products...
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The markovian representation in Ll(;:)

Markovian representation of X

Markovian representation exploiting the structure of the kernel:

» First introduced in Carmona, Coutin & Montseny '00 for the
Markovian representation of fractional Brownian motion,

> Recently generalized to uncontrolled stochastic Volterra: A.J. & El
Euch '19, Cuchiero & Teichmann '18, Harms & Stefanovits '19.
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The markovian representation in Ll(;:)

Markovian representation of X
Assumption : K(t) = [ e %*u(d0)

t
X = golt) +/ K(t — 5) (b(s, X, as)ds + (s, X, g )dW5)
0

dZo

s
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t
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0
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R, Jo
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Markovian representation of X
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t
X = golt) +/ K(t — 5) (b(s, X, as)ds + (s, X, g )dW5)
0

dZo

s

ot
—e(0)+ [ w(do) [ etz
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The markovian representation in Ll(;:)

Markovian representation of X
Assumption : K(t) = [ e %*u(d0)

t
X = golt) +/ K(t — 5) (b(s, X, as)ds + (s, X, g )dW5)
0

dZo

s

ot
—e(0)+ [ w(do) [ etz
R, Jo

— ao(t) + / H(d6) Y2 (0)

where Y7 (0) = [[ e "9dze, 9 e R,
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The markovian representation in Ll(;:)

Markovian representation of X
Assumption : K(t) = [ e %*u(d0)
t
X = go(t) +/ K(t — ) (b(s. X, as)ds + o (s, X2, as)dW,)
0

dZo

s

ot
—e(0)+ [ w(do) [ etz
R, Jo

— ao(t) + / H(d6) Y2 (0)

where Y (0) == [[ e "9)dzo, 9 € Ry. In particular, (Y)e>o is
the mild solution of

dvi(0) = (_ey;’f(e) +b <t, go(t) + /R u(d&’)Yf(H’),%)) dt

+

to (t, go(t) + /R u(d@')Yto‘(G'),at> dWe,  YE(0) = 0.



Stochastic Volterra
0O0@000000

The markovian representation in Ll(;:)

Markovian representation of X
= Markovian problem in L!(;1) on the state variables Y“:

Define the mean-reverting operator A™" acting on measurable
functions ¢ € L1(u) by

(A™@)(0) = —0p(0), 0 €Ry,

and consider the dual pairing
(o= [ O D)0, () € L) x LT,

For any matrix—valued kernel G, we denote by G the integral operator
induced by G, defined by:

(Go)(0) = / G(0,8)u(d6")o(8").
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The markovian representation in Ll(;:)

To fix ideas we set g = 8 =7 =0.
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The markovian representation in Ll(;:)

To fix ideas we set g = 8 =7 =0.

xz = [ u(doyve(o)
Ry
Controlled process Y*
dYf = (A"YS+ BYZ + Cay)dt + (DY + Fae)dWe, Yy =0,

Cost functional

]
Ja) =E / (Y2, QY2), + ol Na) ds | |
0

The Volterra LQ optimization problem can be reformulated as a possibly
infinite dimensional Markovian LQ problem in L*(p). (!) Banach not
Hilbert
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The markovian representation in Ll(;:)

Heuristic derivation

LQ structure of the problem suggests a value function of the form:
Ve = (Y T Y,
with an optimal feedback control o* satisfying
af = —(N+ FTF) 7 (C T+ FT.D) Y,

where T; is an auto-adjoint operator from L1(y) into L°( "), and solves
the operator Riccati equation:

0
—IA™ — (TLA™)* — Q — D'T.D — B*T, — (B*T,)"
+ (C* Ty + F*T:D)* (N + F*T.F) " (C*T; + F*T.D)

rr
I
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The markovian representation in Ll(;:)

Verification argument

Xo = / 1(d6) Y2 (0)

dY©(0) = (—evg(e) +B /R 1(d0)YO () + Cat> dt

+

+ (D / u(do") Y2 (') + Fat) dW,, Y&(0) =0,
R+

Ansatz:
Ve = YT = [ YE ) (o) (O e (7)
+
Define

t
Se = vta+/ (Y, QY2), + al Nay) ds
0

Strategy (as previously): Prove that S is a submartingale, by
completion of squares technique, and make the optimal control o*
appear...
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The markovian representation in Ll(;:)

Verification argument
= Since Y;(0) semimartingale, apply 1t6 6 by 6 on
t— Y2(O)T:(0, 7)Y (7).

After completion of squares: Vanishing quadratic term yields the Riccati
equation for I

.
r(6,7) = / e FIE=IR (M) (0, 7)ds, 1@ pu— a.e.
t

Ri()(0,7) =Q+ DT /

[ @O )u(dr)D + BT / 1(d0) T 7)

¥ Ry

+/ r(0, 7 )u(dr")B = S(N)(6) " N~H(N)S(T)(r)
Ry
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Verification argument

Verification result

Assume that
1. There exists a global solution I € C([0, T], L*(12® 1)) to the Riccati:

T
F(6,7) = / e~ (+7=OR, (T,)(6, 7)ds
t
2. There exists an admissible control a* satisfying

of =R [ STO)u(do)Ye ()

JR,

Then, a* is an optimal control and V" = (Y2 T,Y2"), is the value
function of the problem:

V' = inf Jy(a)
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Existence Riccati

Riccati equation

Assume
d m
QesS{, N-A,ecS],

for some A > 0. Then, there exists a unique solution
e C([0, T], L (1 @ ) to the Riccati equation such that for all t < T

Fe(0,7) = Te(T, Q)T, neu—a.e.,
and

L B(0) T pu(dO) (0, T)u(d7)p(7) > 0, ¢ € L=(p).

Furthermore, there exists some positive constant M > 0 such that

/ml(dr)lrt(e,rns M. j—se. 0<t<T.
Ry
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Approximation of LQ Volterra

Intuition for the

L K(t) = [g, e " u(db),

2. Approxnmate i by u =>", cidg,,

5. K7(0) = fy, e~ (00 £ S et 5 K(),
4,

t
XPe = gf(t) + /0 K (t — s)dzme

t
Xta:go(t)—i—/ K(t —s)dZg.
0
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Approximation of LQ Volterra
By substituting (K, go) with (K", gf), the approximating problem reads

V= L)

where

-
J"(a) = inf E [/ (X2 T QXM + af Na) ds]
acA 0
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Approximation of LQ Volterra
By substituting (K, go) with (K", gf), the approximating problem reads

V= L)

where

-
J"(a) = inf E [/ (X2 T QXM + af Na) ds]
acA 0

Main result 2: Stability

Assume (N — M,) € ST and that Q is invertible. Denote by V* and V"*
the respective optimal value processes for the respective inputs (gp, K)
and (g§, K"), for n > 1. If

||Kn—K||L2(07T) — 0 and Hg(?_gOHLZ(O,T) —)0, as n — o9,

then,
Vn* _) V*
0 O ) aS n % OO.
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Choice for (K"),, fractional case
Recall that K(t) = [ e 0t u(do).
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Choice for (K"),, fractional case
Recall that K(t) = f]& e 9 1(dh). Set K"(t) =1, cre=0it
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Choice for (K"),, fractional case
Recall that K(t) = [, e **u(df). Set K"(t) = 37, cfe”* with

nj 1 [
o = / wu(dd) and 07 = o Ou(do),
U

n H n
i—1 oM

for some partition 0 < nf < ... < 7).
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Choice for (K"),, fractional case
Recall that K(t) = [ e % u(do). Set K"(t

)=
7 1 [
c :/ wu(dd) and 07 = —n/
n_q ni_

for some partition 0 < nf < ... < 7).
= HK” — KHLQ(O,T) — 0.

Sor,cle %t with



Choice for (K"),, fractional case
Recall that K(t) = [ e % u(do). Set K"(t)

us

1
o = / u(dd) and 07 = —
" C

i1 i
for some partition 0 < nf < ... < 7).
= HK” — KHLQ(O,T) — 0.

2
n;

n

n na—
=16 €

Approximation of LQ Volterra
00e0000

07t with

6u(db),

Mi—1

Fractional kernel: closed form expressions

(1-a) _ ,
Cin _ (r” 1) rf(]l—oz)/’ eln _
Ma)r(l—a)(l-a)

2—a
l-arm -
-«
2—arm % -

1,4
r 1 n/2’

1[7

where o := H + 1/2, with a geometric repartition 1" = r/ for some r,

such that
rmd1l and nlnr, — oo,

See (A.J. 19, A.J. & El Euch '19)

as n — o0.
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Practical relevance
Setd=d =m=1 (g =0).

X :/ "(dO) Y, (0 Zc Yo
R,
where, after setting Y™/'@ := Y(07),

n
AYPRt = [ —OIYY+ BY Y+ Cae | dt
j=1

+ [ DY Y+ Fayr | dWe, Y =0, i=1,...,n,
j=1
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Practical relevance
Setd=d =m=1 (g =0).

X :/ "(dO) Y, (0 Zc Yo
R,
where, after setting Y™/'@ := Y(07),

n
AYPRt = [ —OIYY+ BY Y+ Cae | dt
j=1

n
+ [ DY Y+ Fayr | dWe, Y =0, i=1,...,n,
j=1
> (Y"v"va)lg;gn is a conventional Markovian LQ problem in R".

> Riccati equation in L*(u") reduces to the standard n x n-matrix
Riccati equation which can be solved numerically.
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Practical relevance
Setd=d =m=1 (g =0).

X :/ "(dO) Y, (0 Zc Yo
R,
where, after setting Y™/'@ := Y(07),

n
AYPRt = [ —OIYY+ BY Y+ Cae | dt
j=1

+ [ DY Y+ Fayr | dWe, Y =0, i=1,...,n,
j=1

» (Y™®)1<i<p, is a conventional Markovian LQ problem in R”.
> Riccati equation in L*(u") reduces to the standard n x n-matrix
Riccati equation which can be solved numerically.
Stability result = Approximation of LQ Volterra problem by
conventional Markovian LQ problems in finite dimension.
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Wrap-up

» Martingale verification argument as in conventional case.

» Infinite dimensional control in Banach space: known results in
Hilbert spaces cannot be applied

» Generic existence and uniqueness results for Riccati equations in
LYp @ p),

» LQ Volterra problems can be identified/approximated with
conventional Markovian LQ problems,
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Questions

For the more details on what was presented :

» Linear—Quadratic control for a class of stochastic Volterra
equations: solvability and approximation, 2019, Abi Jaber,
Miller, Pham,

> Integral operator Riccati equations arising in stochastic
Volterra control problems, 2019, Abi Jaber, Miller, Pham.

Contact
» enzo.miller@polytechnique.org
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