

Markowitz portfolio selection for multivariate affine and quadratic Volterra models

Enzo Miller*

*Université Paris Diderot, https://enzomiller.github.io/

European Summer School in Financial Mathematics , Vienna 2020

Joint work with Eduardo Abi Jaber, Université Paris 1 Panthéon-Sorbonne, Huyên Pham, Université Paris Diderot.

The Markowitz (1952) mean-variance portfolio selection problem is the cornerstone of modern portfolio allocation theory. Investment decisions rules are made according to a tradeoff between return and risk. The use of Markowitz efficient portfolio strategies in the financial industry has become quite popular mainly due to its natural and intuitive formulation.

> min $\mathbb{E}(X^{\pi}) = m$ *π*∈Admissible strategies $\mathbb{V}(X^\pi)$

In the direction of more realistic modeling of asset prices, it is now well-established since the seminal paper by Gatheral et al. (2018) that volatility is rough, modeled by Fbm with small Hurst parameter $H \approx 0.1$. In an empirical study, Glasserman & He (2020) observed that the buy rough sell smooth was yielding superior returns.

Question: How is the investment strategy influenced by the H_i's? Can we recover the buy rough sell smooth strategy ? Tractable numerics ?

The Markowitz (1952) mean-variance portfolio selection problem is the cornerstone of modern portfolio allocation theory. Investment decisions rules are made according to a tradeoff between return and risk. The use of Markowitz efficient portfolio strategies in the financial industry has become quite popular mainly due to its natural and intuitive formulation.

> min $\mathbb{E}(X^{\pi}) = m$ *π*∈Admissible strategies $\mathbb{V}(X^\pi)$

In the direction of more realistic modeling of asset prices, it is now well-established since the seminal paper by Gatheral et al. (2018) that volatility is rough, modeled by Fbm with small Hurst parameter $H \approx 0.1$. In an empirical study, Glasserman $&$ He (2020) observed that the buy rough sell smooth was yielding superior returns.

Question: How is the investment strategy influenced by the H_i's? Can we recover the buy rough sell smooth strategy ? Tractable numerics ?

The Markowitz (1952) mean-variance portfolio selection problem is the cornerstone of modern portfolio allocation theory. Investment decisions rules are made according to a tradeoff between return and risk. The use of Markowitz efficient portfolio strategies in the financial industry has become quite popular mainly due to its natural and intuitive formulation.

> min $\mathbb{E}(X^{\pi}) = m$ *π*∈Admissible strategies $\mathbb{V}(X^\pi)$

In the direction of more realistic modeling of asset prices, it is now well-established since the seminal paper by Gatheral et al. (2018) that volatility is rough, modeled by Fbm with small Hurst parameter $H \approx 0.1$. In an empirical study, Glasserman $&$ He (2020) observed that the buy rough sell smooth was yielding superior returns.

Question: How is the investment strategy influenced by the H_i's? Can we recover the buy rough sell smooth strategy ? Tractable numerics ?

An example with two stocks

Consider a financial market on $[0, T]$ with two stocks S^1 and S^2 :

$$
\begin{cases}\ndS_t^i = S_t^i \left(\theta(Y_t^i)^2 dt + Y_t^i d\tilde{B}_t^i \right), \\
Y_t^i = Y_0 + \int_0^t (t - s)^{H_i - 1/2} \eta_i dW_s^i, \quad i = 1, 2,\n\end{cases}
$$

with $0 < H_1 < H_2 < 1/2$ and

$$
\tilde{B}^1 = B^1
$$
, $\tilde{B}^2 = \rho B^1 + \sqrt{1 - \rho^2} B^2$, $W^i = c_i \tilde{B}^i + \sqrt{1 - c_i^2} \tilde{B}^{i, \perp}$,

where $(B^1,B^2,B^{1,\perp},B^{2,\perp})$ is a four dimensional Brownian motion.

Question: How do the H's affect the optimal investment strategy ?

An example with two stocks

Consider a financial market on $[0, T]$ with two stocks S^1 and S^2 :

$$
\begin{cases}\ndS_t^i = S_t^i \left(\theta(Y_t^i)^2 dt + Y_t^i d\tilde{B}_t^i \right), \\
Y_t^i = Y_0 + \int_0^t (t - s)^{H_i - 1/2} \eta_i dW_s^i, \quad i = 1, 2,\n\end{cases}
$$

with $0 < H_1 < H_2 < 1/2$ and

$$
\tilde{B}^{1} = B^{1}, \quad \tilde{B}^{2} = \rho B^{1} + \sqrt{1 - \rho^{2}} B^{2}, \quad W^{i} = c_{i} \tilde{B}^{i} + \sqrt{1 - c_{i}^{2}} \tilde{B}^{i, \perp},
$$

where $(B^1,B^2,B^{1,\perp},B^{2,\perp})$ is a four dimensional Brownian motion.

Question: How do the H's affect the optimal investment strategy ?

An example with two stocks

Consider a financial market on $[0, T]$ with two stocks S^1 and S^2 :

$$
\begin{cases}\ndS_t^i = S_t^i \left(\theta(Y_t^i)^2 dt + Y_t^i d\tilde{B}_t^i \right), \\
Y_t^i = Y_0 + \int_0^t (t - s)^{H_i - 1/2} \eta_i dW_s^i, \quad i = 1, 2,\n\end{cases}
$$

with $0 < H_1 < H_2 < 1/2$ and

$$
\tilde{B}^1 = B^1
$$
, $\tilde{B}^2 = \rho B^1 + \sqrt{1 - \rho^2} B^2$, $W^i = c_i \tilde{B}^i + \sqrt{1 - c_i^2} \tilde{B}^{i, \perp}$,

where $(B^1,B^2,B^{1,\perp},B^{2,\perp})$ is a four dimensional Brownian motion.

Question: How do the H's affect the optimal investment strategy ?

Literature review

The research on portfolio optimization and multivariate rough models is still little developed but has gained an increasing attention :

- **Fractional OU environment (1d)**+ power utility : Fouque & Hu (2018)
- \triangleright Multidimensional setting (no control) : Abi Jaber (2019), Cuchiero & Teichman (2019), Rosenbaum & Tomas (2019)
- ▶ Rough Heston $(1d)$ + power utility : Bäuerle & Demestre (2020)
- \triangleright Rough Heston (1d) + Markowitz : Han & Wong (2020)

 \triangleright Passing to the multidimensional case $+$ Tractable numerics **In our paper:** We solve the Markowitz problem both in the multivariate affine (Rough Heston) and quadratic (Stein-Stein) models and study numerically the quadratic case. We recover the buy rough sell smooth strategy when *ρ >* 0 and exhibit a transition from $T \ll 1$ to $T \gg 1$.

Literature review

The research on portfolio optimization and multivariate rough models is still little developed but has gained an increasing attention :

- **Fractional OU environment (1d)**+ power utility : Fouque & Hu (2018)
- \triangleright Multidimensional setting (no control) : Abi Jaber (2019), Cuchiero & Teichman (2019), Rosenbaum & Tomas (2019)
- ▶ Rough Heston $(1d)$ + power utility : Bäuerle & Demestre (2020)
- \triangleright Rough Heston (1d) + Markowitz : Han & Wong (2020)

Challenges and Limitations:

 \blacktriangleright Passing to the multidimensional case $+$ Tractable numerics

In our paper: We solve the Markowitz problem both in the multivariate affine (Rough Heston) and quadratic (Stein-Stein) models and study numerically the quadratic case. We recover the buy rough sell smooth strategy when *ρ >* 0 and exhibit a transition from $T \ll 1$ to $T \gg 1$.

Consider a financial market on $[0,\,T]$ a non–risky asset $S^0=1$, and d risky assets with dynamics

$$
dS_t = \text{diag}(S_t) \big[\big(\sigma_t \lambda_t\big) dt + \sigma_t dB_t \big].
$$

 \blacktriangleright σ : $\mathbb{R}^{d \times d}$ - valued stochastic volatility process, $\blacktriangleright \lambda : \mathbb{R}^d$ -valued stochastic market price of risk $(\approx \frac{\epsilon}{\text{risk}})$

Let

 $N = (N^1, ..., N^d)$: numbers of shares bought in the risky assets $(S^1, ..., S^d)$, $\blacktriangleright \pi = (\pi^1,...,\pi^d) = N^{\top}$ diag (S) : amounts invested in the risky assets $(S^1,...,S^d)~(\approx \epsilon),$ $\blacktriangleright \alpha = \sigma^\top \pi$

$$
dX_t = N_t^\top dS_t
$$

= N_t^\top diag $(S_t) [(\sigma_t \lambda_t) dt + \sigma_t dB_t]$
= $\alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}.$

Let

 $N = (N^1, ..., N^d)$: numbers of shares bought in the risky assets $(S^1, ..., S^d)$, $\blacktriangleright \pi = (\pi^1,...,\pi^d) = \mathsf{N}^\top$ diag (S) : amounts invested in the risky assets $(S^1,...,S^d)$ $(\approx \epsilon)$, $\blacktriangleright \alpha = \sigma^\top \pi$

$$
dX_t = N_t^\top dS_t
$$

= N_t^\top diag $(S_t) [(\sigma_t \lambda_t) dt + \sigma_t dB_t]$
= $\alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}.$

Let

 $N = (N^1, ..., N^d)$: numbers of shares bought in the risky assets $(S^1, ..., S^d)$, $\blacktriangleright \pi = (\pi^1,...,\pi^d) = \mathsf{N}^\top$ diag (S) : amounts invested in the risky assets $(S^1,...,S^d)$ $(\approx \epsilon)$, $\blacktriangleright \alpha = \sigma^{\top} \pi$

$$
dX_t = N_t^\top dS_t
$$

= N_t^\top diag $(S_t) [(\sigma_t \lambda_t) dt + \sigma_t dB_t]$
= $\alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}.$

Let

 $N = (N^1, ..., N^d)$: numbers of shares bought in the risky assets $(S^1, ..., S^d)$, $\blacktriangleright \pi = (\pi^1,...,\pi^d) = \mathsf{N}^\top$ diag (S) : amounts invested in the risky assets $(S^1,...,S^d)$ $(\approx \epsilon)$, $\blacktriangleright \alpha = \sigma^{\top} \pi$

$$
dX_t = N_t^\top dS_t
$$

= N_t^\top diag $(S_t) [(\sigma_t \lambda_t) dt + \sigma_t dB_t]$
= $\alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}.$

As a result, our problem reduces to

$$
V(m) = \min_{\substack{\mathbb{E}(X_T)=m \\ \alpha \in \mathcal{A}}} \mathbb{V}(X_T),
$$

under the constrain

$$
dX_t = \alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}.
$$

(Quadratic) Rough volatility assumption :

- $\blacktriangleright \ \lambda = \Theta Y$, $(\ \sigma_{ij} = \gamma_{ij}^\top Y$, $dS_t = \text{diag}(S_t) \big[(\sigma_t \lambda_t) dt + \sigma_t dB_t \big]$
- $Y_t = g_0(t) + \int_0^t K(t,s) \eta dW_s \in \mathbb{R}^N$, Volterra OU-process,
- \triangleright W : N-dimensional BM correlated to B via $W_t^k = C_k^{\top} B_t + \sqrt{1 - C_k^{\top} C_k} B_t^{\perp, k}, \quad k = 1, ..., N.$
- \blacktriangleright K : a general non convolution kernel in L^2 . Today we only present the multivariate quadratic case, we refer to our paper for the affine (Heston) setting.

As a result, our problem reduces to

$$
V(m) = \min_{\substack{\mathbb{E}(X_T)=m \\ \alpha \in \mathcal{A}}} \mathbb{V}(X_T),
$$

under the constrain

$$
dX_t = \alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}.
$$

(Quadratic) Rough volatility assumption :

$$
\blacktriangleright \ \lambda = \Theta Y, \ (\ \sigma_{ij} = \gamma_{ij}^\top Y, \ dS_t = \text{diag}(S_t) \big[(\sigma_t \lambda_t) dt + \sigma_t dB_t \big] \big)
$$

 $Y_t = g_0(t) + \int_0^t K(t, s) \eta dW_s \in \mathbb{R}^N$, Volterra OU-process,

► *W*: N-dimensional BM correlated to *B* via
\n
$$
W_t^k = C_k^\top B_t + \sqrt{1 - C_k^\top C_k B_t^{\perp,k}}, \quad k = 1, ..., N.
$$

 \blacktriangleright K : a general non convolution kernel in L^2 . Today we only present the multivariate quadratic case, we refer to our paper for the affine (Heston) setting.

As a result, our problem reduces to

$$
V(m) = \min_{\substack{\mathbb{E}(X_T)=m \\ \alpha \in \mathcal{A}}} \mathbb{V}(X_T),
$$

under the constrain

$$
dX_t = \alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}.
$$

(Quadratic) Rough volatility assumption :

$$
\blacktriangleright \ \lambda = \Theta Y, \ (\ \sigma_{ij} = \gamma_{ij}^\top Y, \ dS_t = \text{diag}(S_t) \big[(\sigma_t \lambda_t) dt + \sigma_t dB_t \big])
$$

- $Y_t = g_0(t) + \int_0^t K(t, s) \eta dW_s \in \mathbb{R}^N$, Volterra OU-process,
- \triangleright W : N-dimensional BM correlated to B via $W_t^k = C_k^{\top} B_t + \sqrt{1 - C_k^{\top} C_k} B_t^{\perp, k}, \quad k = 1, \ldots, N.$
- \triangleright K : a general non convolution kernel in L^2 . Today we only present the multivariate quadratic case, we refer to our paper for the affine (Heston) setting.

$$
\begin{cases} \min_{\alpha \in \mathcal{A}} & \mathbb{V}(X), \qquad \mathbb{E}(X_T) = m, \\ dX_t = \alpha_t^\top (\lambda_t dt + dB_t), \quad X_0 = x_0 \in \mathbb{R}. \end{cases}
$$

(Quadratic) Rough volatility assumption :

$$
\blacktriangleright \lambda = \Theta Y
$$

$$
\sum Y_t = g_0(t) + \int_0^t K(t, s) \eta dW_s
$$
, N-dimensional Volterra
Ornstein-Uhlenbeck process

Question: How is the investment strategy influenced by the H_i's? Efficient numerics ?

$$
\begin{cases}\n\min_{\alpha \in \mathcal{A}} & \mathbb{V}(\mathcal{X}), \qquad \mathbb{E}(\mathcal{X}_{\mathcal{T}}) = m, \\
d\mathcal{X}_t = \qquad \alpha_t^{\top}(\lambda_t dt + dB_t), \quad \mathcal{X}_0 = x_0 \in \mathbb{R}.\n\end{cases}
$$

(Quadratic) Rough volatility assumption :

$$
\blacktriangleright \lambda = \Theta Y
$$

 $Y_t = g_0(t) + \int_0^t K(t,s) \eta dW_s$, N-dimensional Volterra Ornstein–Uhlenbeck process

Question: How is the investment strategy influenced by the H_i's? Efficient numerics ?

Verification theorem

Assume that there exists a solution triplet (Γ, Z^1, Z^2) to the Riccati BSDE[∗]

$$
\begin{cases}\n d\Gamma_t = \Gamma_t \Big[\left| \lambda_t + Z_t^1 + CZ_t^2 \right|^2 dt + \left(Z_t^1 \right)^{\top} dB_t + \left(Z_t^2 \right)^{\top} dW_t \Big], \\
 \Gamma_T = 1,\n\end{cases}
$$

Then, the optimal investment strategy is given by

$$
\alpha_t^* = (\lambda_t + Z_t^1 + CZ_t^2)(\xi^* - X_t^*), \qquad \xi^* = \frac{m - \Gamma_0 x_0}{1 - \Gamma_0},
$$

and the value of the optimal wealth process is

$$
V(m) = \mathbb{V}(X_T^*) = \Gamma_0 \frac{|x_0 - m|^2}{1 - \Gamma_0}.
$$

 * with some additional hypothesis on $\mathbb{E}[\exp(\int_0^T |\lambda_s|^2 ds)]$ and $\Gamma.$

Sketch of proof

It is well-known that the Markowitz problem is equivalent to the following max-min problem,

$$
\min_{\substack{\mathbb{E}(X_{\mathcal{T}})=m \\ \alpha \in \mathcal{A}}} \mathbb{V}(X_{\mathcal{T}}^{\alpha}) = \max_{\eta \in \mathbb{R}} \min_{\alpha \in \mathcal{A}} \left\{ \mathbb{E}\left[\left| X_{\mathcal{T}}^{\alpha} - (m-\eta) \right|^{2} \right] - \eta^{2} \right\}.
$$

Thus, two optimization problems have to be solved :

- 1. the internal minimization problem over $\alpha \in \mathcal{A} \rightarrow$ stochastic LQ
- 2. the external maximization problem over $\eta \in \mathbb{R} \to$ simple minimization of a 2nd degree polynomial.

Sketch of proof

It is well-known that the Markowitz problem is equivalent to the following max-min problem,

$$
\min_{\substack{\mathbb{E}(X_{\mathcal{T}})=m \\ \alpha \in \mathcal{A}}} \mathbb{V}(X_{\mathcal{T}}^{\alpha}) = \max_{\eta \in \mathbb{R}} \min_{\alpha \in \mathcal{A}} \left\{ \mathbb{E}\left[\left| X_{\mathcal{T}}^{\alpha} - (m-\eta) \right|^{2} \right] - \eta^{2} \right\}.
$$

Thus, two optimization problems have to be solved :

- 1. the internal minimization problem over $\alpha \in \mathcal{A} \rightarrow$ stochastic LQ problem,
- 2. the external maximization problem over $\eta \in \mathbb{R} \to$ simple minimization of a 2nd degree polynomial.

Some remarks

$$
\alpha_t^* = (\lambda_t + Z_t^1 + C Z_t^2)(\xi^* - X_t^*)
$$

- ► It can be proved that $\xi^* X_t^* \geq 0$ on [0,T].
- \triangleright Consequently, to grasp the effect of the roughness's of stocks upon the investment strategy, one needs to understand its effect on Z^1 and Z^2 .
- \blacktriangleright We will derive explicit formulae for the the triplets (Γ, Z^1, Z^2) .

Verification theorem

Table: Comparison to existing verification results for mean-variance problems.

(H1) $0 < \Gamma_0 < 1$, and $\Gamma_t > 0$, (H2)

$$
\mathbb{E}\Big[\exp\Big(a(p)\int_0^T\big(|\lambda_s|^2+|Z_s^1|^2+|Z_s^2|^2\big)ds\Big)\Big]<\infty,
$$

for some $p > 2$ and a constant $a(p)$ given by

$$
a(p) = \max \left[p \left(3 + |C| \right), \left(8p^2 - 2p \right) \left(1 + 2|C| + |C|^2 \right) \right].
$$

Some remarks

By setting $\tilde{Z}_t^i = \Gamma_t Z_t^i$, the Riccati BSDE agrees with the one in Chiu and Wong (2014, Theorem 3.1)

which is the Riccati BSDE one naturally encounters when solving the LQ control problem.

 \triangleright This observation on the degree of the equation allows us to avoid **the Martingale distortion transformation** (Γ^a, a ∈ ℝ) which only works in dimension 1 ! See Fouque & Hu (2018).

Understanding (Γ, Ζ¹, Ζ²)

Recall that we need to solve

$$
\begin{cases}\n d\Gamma_t = \Gamma_t \Big[\left| \lambda_t + Z_t^1 + CZ_t^2 \right|^2 dt + \left(Z_t^1 \right)^{\top} dB_t + \left(Z_t^2 \right)^{\top} dW_t \Big], \\
 \Gamma_T = 1,\n\end{cases}
$$

Key idea : 0bserve that if such solution exists, then, it admits the following representation as a Laplace transform:

$$
\Gamma_t = \mathbb{E}\Big[\exp\Big(-\int_t^T\big(\left|\lambda_s + Z_s^1 + CZ_s^2\right|^2\big)ds\Big)\Big| \mathcal{F}_t\Big], \quad 0 \leq t \leq T.
$$

► If λ deterministic $\implies \Gamma_t = e^{-\int_t^T \lambda_s ds}, Z^1 = Z^2 = 0.$

Understanding (Γ, Ζ¹, Ζ²)

Recall that we need to solve

$$
\begin{cases}\n d\Gamma_t = \Gamma_t \Big[\left| \lambda_t + Z_t^1 + CZ_t^2 \right|^2 dt + \left(Z_t^1 \right)^{\top} dB_t + \left(Z_t^2 \right)^{\top} dW_t \Big], \\
 \Gamma_T = 1,\n\end{cases}
$$

Key idea : 0bserve that if such solution exists, then, it admits the following representation as a Laplace transform:

$$
\Gamma_t = \mathbb{E}\Big[\exp\Big(-\int_t^T\big(\big|\lambda_s + Z_s^1 + CZ_s^2\big|^2\big)ds\Big)\Big| \mathcal{F}_t\Big], \quad 0 \leq t \leq T.
$$

• If
$$
\lambda
$$
 deterministic $\implies \Gamma_t = e^{-\int_t^T \lambda_s ds}, Z^1 = Z^2 = 0.$

$$
\Gamma_t = \mathbb{E}\Big[\exp\Big(-\underbrace{\int_t^T\big(\big|\lambda_s + Z_s^1 + CZ_s^2\big|^2\big)ds}_{\approx \text{square Gaussian}}\Big)\ \Big|\ \mathcal{F}_t\Big].
$$

Or, if $G \sim N(\mu, \Sigma)$ in \mathbb{R}^n , then

$$
\mathbb{E}\left(\exp(-u|G|^2)\right)=\frac{\exp\left(-u\left(\mu^{\top}\left(I_n+2\Sigma u\right)^{-1}\mu\right)\right)}{\det(I_n+2\Sigma u)^{1/2}}
$$

Idea : Make the approximation, see Abi Jaber (2019) :

$$
\int_{t}^{T} G_{s}^{2} ds \approx n^{-1} \sum_{i=1}^{n} G_{i/n}^{2} \sim |N(\mu_{n}, \Sigma_{n})|^{2}
$$

A a result, we expect

$$
\Gamma_t = \mathbb{E}\Big[\exp\Big(-\int_t^T \big(\big|\lambda_s + Z_s^1 + CZ_s^2\big|^2\big)ds\Big)\Big| \mathcal{F}_t\Big]
$$

$$
\approx \lim_{n \to \infty} \frac{\exp\big(-(\mu_n^{\top}\big(I_n + 2u\Sigma_n u\big)^{-1}\mu_n\big)}{\det(I_n + 2\Sigma_n)^{1/2}}
$$

Questions :

▶ To what limit do these object of length *n* converge as $n \to \infty$?

As a result we expect

$$
\Gamma_{t} = \mathbb{E}\Big[\exp\Big(-\int_{t}^{T}\big(\left|\lambda_{s} + Z_{s}^{1} + CZ_{s}^{2}\right|^{2}\big)ds\Big)\Big| \underbrace{\mathcal{F}_{t}}_{\text{randomness over [0, t]}}\Big]
$$
\n
$$
\approx \lim_{n \to \infty} \frac{\exp\big(-(\mu_{n} \top (I_{n} + 2\Sigma_{n}u)^{-1}\mu_{n})}{\det(I_{n} + 2\Sigma_{n})^{1/2}}
$$

Questions :

- 1. To what limit do these objects of length *n* converge as $n \to \infty$?
- 2. What should play the role of μ_n in our setting ?

Questions :

- 1. To what limit do these object of length *n* converge as $n \to \infty$?
	- As $n \to \infty$, big matrices converge to operators. A natural infinite dimensional space appears : $L^2([0, T])$.
- 2. What should play the role of μ_n in our setting ?
	- \triangleright With respect to what information Y is markovian?

 $\rightarrow \textsl{g}_t(\textsl{s}) = \mathbb{E}\Big[\textsl{Y}_\textsl{s} \mid \mathcal{F}_t \Big]$, $\textsl{s} \geq t.$

As a result we expect

$$
\Gamma_t = \mathbb{E}\Big[\exp\Big(-\int_t^T \big(\big|\lambda_s + Z_s^1 + CZ_s^2\big|^2\big)ds\Big)\Big| \mathcal{F}_t\Big]
$$

\$\approx \lim_{n\to\infty} \frac{\exp\big(-\mu_n^\top (I_n + 2\Sigma_n u)^{-1}\mu_n\big)}{\det(I_n + 2\Sigma_n)^{1/2}}\$
\$\approx \exp\big(\phi_t + \langle g_t, \Psi_t g_t \rangle_{L^2}\big)\$

 \triangleright This limit argument will guide us to approximate the infinite dimensional object **Ψ**. However, we do not use this argument throughout our paper and work all the way long in the infinite dimensional setting.

As a result we expect

$$
\Gamma_t = \mathbb{E}\Big[\exp\Big(-\int_t^T \big(\big|\lambda_s + Z_s^1 + CZ_s^2\big|^2\big)ds\Big)\Big| \mathcal{F}_t\Big]
$$

\$\approx \lim_{n\to\infty} \frac{\exp\big(-\mu_n^\top (I_n + 2\Sigma_n u)^{-1}\mu_n\big)}{\det(I_n + 2\Sigma_n)^{1/2}}\$
\$\approx \exp\big(\phi_t + \langle g_t, \Psi_t g_t \rangle_{L^2}\big)\$

 \triangleright This limit argument will guide us to approximate the infinite dimensional object **Ψ**. However, we do not use this argument throughout our paper and work all the way long in the infinite dimensional setting.

The setting

- In Let $\langle \cdot, \cdot \rangle_{L^2}$ be inner product on $L^2([0, T], \mathbb{R}^N)$ that is $\langle f, g \rangle_{L^2} = \int_0^T f(s)^\top g(s) ds.$
- $\blacktriangleright \ \forall K \in L^2([0, T]^2, \mathbb{R}^{N \times N})$, we denote by **K** the integral operator induced : $(Kg)(s) = \int_0^T K(s, u)g(u)du$.
- **E K** is said to be positive if $\langle f, Kf \rangle_{L^2}$ ≥ 0.

Riccati operator

Inspired by Abi Jaber (2019), we provide an explicit solution to the Riccati BSDE, in terms of the following family of linear operators acting on $L^2([0, T], \mathbb{R}^N)$:

$$
\Psi_t = -\Big(\mathrm{Id} - \hat{\mathbf{K}}\Big)^{-*} \Theta^{\top} \Big(\mathrm{Id} + 2\Theta \tilde{\boldsymbol{\Sigma}}_t \Theta^{\top}\Big)^{-1} \Theta \Big(\mathrm{Id} - \hat{\mathbf{K}}\Big)^{-1}, \quad 0 \leq t \leq \mathcal{T},
$$

 \triangleright \hat{K} is the integral operator induced by the kernel $\hat{K} = -2K(\eta \mathcal{C}^\top \Theta)$ $\boldsymbol{\Sigma}_t = (\text{Id} - \hat{\boldsymbol{K}})^{-1} \boldsymbol{\Sigma}_t (\text{Id} - \hat{\boldsymbol{K}})^{-*}$

 \blacktriangleright Σ_t defined as the integral operator associated to the kernel

$$
\Sigma_t(s, u) = \int_t^{s \wedge u} K(s, z) \eta \left(U - 2C^\top C \right) \eta^\top K(u, z)^\top dz, \qquad t \in [0, T],
$$

where
$$
U = \frac{d \langle W \rangle_t}{dt} = \left(1_{i=j} + 1_{i \neq j} (C_i)^{\top} C_j\right)_{1 \leq i, j \leq N}
$$

Riccati operator

Inspired by Abi Jaber (2019), we provide an explicit solution to the Riccati BSDE, in terms of the following family of linear operators acting on $L^2([0, T], \mathbb{R}^N)$:

$$
\Psi_t = -\left(\mathrm{Id} - \hat{\mathbf{K}}\right)^{-*} \Theta^{\top} \left(\mathrm{Id} + 2\Theta \tilde{\boldsymbol{\Sigma}}_t \Theta^{\top}\right)^{-1} \Theta \left(\mathrm{Id} - \hat{\mathbf{K}}\right)^{-1}, \quad 0 \leq t \leq \mathcal{T},
$$

where

 \triangleright $\hat{\mathcal{K}}$ is the integral operator induced by the kernel $\hat{K} = -2K(\eta \mathcal{C}^\top \Theta)$ $\boldsymbol{\Sigma}_t = (\text{Id} - \hat{\boldsymbol{K}})^{-1} \boldsymbol{\Sigma}_t (\text{Id} - \hat{\boldsymbol{K}})^{-*}$

 \blacktriangleright Σ_t defined as the integral operator associated to the kernel

$$
\Sigma_t(s,u)=\int_t^{s\wedge u}K(s,z)\eta\big(U-2C^\top C\big)\eta^\top K(u,z)^\top dz,\qquad t\in[0,T],
$$

where
$$
U = \frac{d \langle W \rangle_t}{dt} = \left(1_{i=j} + 1_{i \neq j} (C_i)^{\top} C_j\right)_{1 \leq i,j \leq N}
$$
.

Riccati operator

Inspired by Abi Jaber (2019), we provide an explicit solution to the Riccati BSDE, in terms of the following family of linear operators $(\mathbf{\Psi}_t)_{0\leq t\leq \mathcal{T}}$ acting on $L^2\left([0,\,\mathcal{T}], \mathbb{R}^N\right)$:

$$
\Psi_t = -\left(\mathrm{Id} - \hat{\mathbf{K}}\right)^{-*} \underbrace{\Theta^{\top} \left(\mathrm{Id} + 2\Theta \tilde{\boldsymbol{\Sigma}}_t \Theta^{\top}\right)^{-1} \Theta}_{\approx \lim_{n \to \infty} u(I_n + 2\Sigma_n u)^{-1}} \left(\mathrm{Id} - \hat{\mathbf{K}}\right)^{-1}, \quad t \in [0, \mathcal{T}],
$$

where

 \triangleright $\hat{\bm{K}}$ is the integral operator induced by the kernel $\hat{K} = -2K(\eta \bm{\mathcal{C}}^\top \Theta)$ $\boldsymbol{\Sigma}_t = (\text{Id} - \hat{\boldsymbol{K}})^{-1} \boldsymbol{\Sigma}_t (\text{Id} - \hat{\boldsymbol{K}})^{-*}$

 \blacktriangleright Σ_t defined as the integral operator associated to the kernel

$$
\Sigma_t(s, u) = \int_t^{s \wedge u} K(s, z) \eta \big(U - 2C^\top C \big) \eta^\top K(u, z)^\top dz, \qquad t \in [0, T],
$$

$$
\approx Cov(g_t(s), g_t(u))
$$

Riccati Operator

1. $t \mapsto \Psi_t$ is strongly differentiable and satisfies the operator Riccati equation

$$
\begin{aligned}\n\dot{\Psi}_t &= 2\Psi_t \dot{\Sigma}_t \Psi_t, & t \in [0, T] \\
\Psi_T &= -\left(\text{Id} - \hat{\mathbf{K}}\right)^{-*} \Theta^\top \Theta \left(\text{Id} - \hat{\mathbf{K}}\right)^{-1}\n\end{aligned}
$$

where $\dot{\mathbf{\Sigma}}_t$ is the strong derivative of $t \mapsto \mathbf{\Sigma}_t.$ 2. $\forall f \in L^2$ $(\Psi_t f 1_t)(t) = (-\Theta^\top \Theta \mathrm{Id} + \hat{\boldsymbol{K}}^* \Psi_t)(f)(t)$ 3. For any $t \in [0, T]$, $(\Theta^{\top} \Theta \mathrm{Id} + \Psi_t)$ is an integral operator.

 ${}^*1_t : s \mapsto 1_{t \leq s}$.

Deriving the solution

Riccati BSDE - Riccati operator - Forward process

Then, the process (Γ, Z^1, Z^2) defined by

$$
\begin{cases}\n\Gamma_t &= \exp(\phi_t + \langle g_t, \Psi_t g_t \rangle_{L^2}), \\
Z_t^1 &= 0, \\
Z_t^2 &= 2((\Psi_t K \eta)^* g_t)(t),\n\end{cases}
$$

is solution to the Riccati BSDE, where $\Phi_t = \ln(det(\Psi_t \Lambda_t)).$

Optimal control

Consequently, the optimal control in the Quadratic model is of the form

$$
\alpha_t^* = \Big(\big(\Theta + 2C \left[\Psi_t \boldsymbol{K} \eta \right]^* \big) g_t \Big) (t) \Big(\xi^* - X_t^{\alpha^*} \Big),
$$

Deriving the solution

Riccati BSDE - Riccati operator - Forward process

Then, the process (Γ, Z^1, Z^2) defined by

$$
\begin{cases}\n\Gamma_t &= \exp(\phi_t + \langle g_t, \Psi_t g_t \rangle_{L^2}), \\
Z_t^1 &= 0, \\
Z_t^2 &= 2((\Psi_t K \eta)^* g_t)(t),\n\end{cases}
$$

is solution to the Riccati BSDE, where $\Phi_t = \ln(det(\Psi_t \Lambda_t)).$

Optimal control

Consequently, the optimal control in the Quadratic model is of the form

$$
\alpha_t^* = \underbrace{\left(\left(\Theta + 2C \left[\Psi_t K \eta \right]^* \right) g_t \right) (t)}_{\text{max}} \quad \left(\xi^* - X_t^{\alpha^*} \right),
$$

Numerically tractable with simple linear algebra !

Link with the classical setting Set $K(t,s) = I_N 1_{s \leq t}$

Lemma - From L^2 to \mathbb{R}^N

Define $P_t = \int_t^T (\Psi_t \mathbf{1}_t)(s)ds$ with $\mathbf{1}_t:(s) \mapsto (1_{t \leq s}, \ldots, 1_{t \leq s})^\top$. Then $t \to P_t \in \mathbb{R}^N$ is solution to a classical Riccati equation :

$$
\dot{P}_t = \Theta^{\top} \Theta + P_t M + M^{\top} P_t - P_t Q P_t, \qquad P_T = 0.
$$

Link to Chiu & Wong (2014)

Then, the solution to the Riccati BSDE can be re-written in the form

$$
\Gamma_t = \exp \left(\phi_t + Y_t^\top P_t Y_t \right), \quad \text{and} \quad Z_t^2 = 2(D\eta)^\top P_t Y_t,
$$

Link with the classical setting Set $K(t,s) = I_N 1_{s \leq t}$

Lemma - From L^2 to \mathbb{R}^N

Define $P_t = \int_t^T (\Psi_t \mathbf{1}_t)(s)ds$ with $\mathbf{1}_t : (s) \mapsto (1_{t \leq s}, \ldots, 1_{t \leq s})^\top$. Then $t\rightarrow P_t\in\mathbb{R}^N$ is solution to a classical Riccati equation :

$$
\dot{P}_t = \Theta^\top \Theta + P_t M + M^\top P_t - P_t Q P_t, \qquad P_T = 0.
$$

Link to Chiu & Wong (2014)

Then, the solution to the Riccati BSDE can be re-written in the form

$$
\Gamma_t = \exp\left(\phi_t + Y_t^\top P_t Y_t\right), \quad \text{and} \quad Z_t^2 = 2(D\eta)^\top P_t Y_t,
$$

► As we'll see, **Ψ** can be easily computed with simple linear algebra. Does this open a new way of computing classical Riccati equation ?

Numerics

We share the code on a [notebook.](https://colab.research.google.com/drive/1P_SYE3WgFgwUKpOo8uCBDdIC04XyxE2a?usp=sharing)

- \blacktriangleright In our paper we solve the Markowitz portfolio allocation problem both in the multidimensional Heston and Stein Stein setting.
- \triangleright The infinite dimensional nature of the solution is numerically tractable with simple linear algebra.
- \triangleright We recover the buy rough $\&$ sell smooth strategy exhibited in Glasserman (2020) when stocks are positively correlated.
- \triangleright We observe an interesting transition from short $T \ll 1$ to long $T \gg 1$ time scale ($\mathbb{V} \approx t^{2H}$, or $t^{2H_1} > t^{2H_2}$ if $t < 1$, then $t^{2H_1} < t^{2H_2}$ for $t > 1$).

- \blacktriangleright In our paper we solve the Markowitz portfolio allocation problem both in the multidimensional Heston and Stein Stein setting.
- \triangleright The infinite dimensional nature of the solution is numerically tractable with simple linear algebra.
- \triangleright We recover the buy rough $\&$ sell smooth strategy exhibited in Glasserman (2020) when stocks are positively correlated.
- \triangleright We observe an interesting transition from short $T \ll 1$ to long $T \gg 1$ time scale ($\mathbb{V} \approx t^{2H}$, or $t^{2H_1} > t^{2H_2}$ if $t < 1$, then $t^{2H_1} < t^{2H_2}$ for $t > 1$).

- \blacktriangleright In our paper we solve the Markowitz portfolio allocation problem both in the multidimensional Heston and Stein Stein setting.
- \triangleright The infinite dimensional nature of the solution is numerically tractable with simple linear algebra.
- \triangleright We recover the buy rough $\&$ sell smooth strategy exhibited in Glasserman (2020) when stocks are positively correlated.
- \triangleright We observe an interesting transition from short $T \ll 1$ to long $T \gg 1$ time scale ($\mathbb{V} \approx t^{2H}$, or $t^{2H_1} > t^{2H_2}$ if $t < 1$, then $t^{2H_1} < t^{2H_2}$ for $t > 1$).

- \blacktriangleright In our paper we solve the Markowitz portfolio allocation problem both in the multidimensional Heston and Stein Stein setting.
- \triangleright The infinite dimensional nature of the solution is numerically tractable with simple linear algebra.
- \triangleright We recover the buy rough & sell smooth strategy exhibited in Glasserman (2020) when stocks are positively correlated.
- \triangleright We observe an interesting transition from short $T \ll 1$ to long $T \gg 1$ time scale ($\mathbb{V} \approx t^{2H}$, or $t^{2H_1} > t^{2H_2}$ if $t < 1$, then $t^{2H_1} < t^{2H_2}$ for $t > 1$).

- \blacktriangleright In our paper we solve the Markowitz portfolio allocation problem both in the multidimensional Heston and Stein Stein setting.
- \triangleright The infinite dimensional nature of the solution is numerically tractable with simple linear algebra.
- \triangleright We recover the buy rough & sell smooth strategy exhibited in Glasserman (2020) when stocks are positively correlated.
- \blacktriangleright We observe an interesting transition from short $T \ll 1$ to long $T \gg 1$ time scale ($\mathbb{V} \approx t^{2H}$, or $t^{2H_1} > t^{2H_2}$ if $t < 1$, then $t^{2H_1} < t^{2H_2}$ for $t > 1$).

Questions

For the more details on what was presented :

I Markowitz portfolio selection for multivariate affine and **quadratic Volterra models**, 2020, Abi Jaber, Miller, Pham.

Contact

 \blacktriangleright enzo.miller@polytechnique.org

Bibliographie

